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The size distribution of surface cracks and the crack pattern were examined on the
specimens of the SUS316 steel plates fatigued by cyclic bending. The size distribution of
the cracks could be approximated to a logarithmic normal distribution, irrespective of the
maximum total strain range or the number of fatigue cycles. The number of the cracks (Nu)
of the length (x ′) equal to or larger than a given size (X ) could be approximated to a power
law, Nu ∝ X−a, with a scaling exponent a at the larger crack sizes in the fatigued specimens
of the SUS316 steel. The value of a decreased with increasing the number of fatigue cycles
because of the increase in the number and size of fatigue cracks, and was larger in the
specimens tested at the smaller total strain range. Effects of experimental variables on the
scaling exponent (a) were also shown in this study. The fractal dimension of spatial crack
distribution (the fractal dimension of crack pattern) (D) increased in the range from about
0.9 to about 1.2 with increasing the number of fatigue cycles, and was larger in the
specimens fatigued at the larger total strain range. There was a negative correlation
between the value of a and the value of D on fatigue cracks, although there was no unique
relationship between these two values. C© 2002 Kluwer Academic Publishers

1. Introduction
The growth of a single dominant crack in fatigue has
been studied experimentally or theoretically from the
viewpoint of fracture mechanics [1]. However, materi-
als fracture is often caused by the growth and linkage
of many cracks, and damage mechanics can be applied
to the prediction of this type of fracture [2]. The size
distribution of the larger cracks seems to be important
in this case, since these cracks may lead to final frac-
ture [3]. It is known that the size distribution of creep
cracks can be approximated by a logarithmic normal
distribution [4, 5]. According to the theoretical study
by Mandelbrot [6] and Takayasu [7], one of the present
authors analysed the size distribution of creep cracks
and revealed that the number of creep cracks (Nu) of
the length (x ′) larger than a given length (X ) can be
approximated by a power law, Nu(x ′ � X ) ∝ X−a , with
an exponent a at the larger crack length in a cobalt-
base heat-resistant alloy [3]. However, it is not known
whether the size distribution of fatigue cracks can be
approximated by a similar relationship.

In the fractured specimens of steels [8] and the creep-
ruptured specimens of pure Zn polycrystals [9], the size
distribution of dimples on the ductile fracture surfaces
could be fitted to a power law. The fractal dimension
of dimple pattern (D) was close to 1.5 and can be cor-

related with the scaling exponent of dimple size distri-
bution (a) in these materials. These results imply that
the dimple pattern has a morphological feature simi-
lar to Sierpinski gasket (the fractal dimension is about
1.58) [10]. In this study, bending fatigue experiments
were carried out using the rectangular specimens of the
austenitic SUS316 steel. Size distribution of surface
cracks was then examined on the fatigued specimens.
Effects of experimental variables such as the number
of fatigue cycles on the scaling exponent of crack size
distribution was also experimentally discussed. Finally,
the relationship between the scaling exponent of crack
size distribution and the fractal dimension of spatial
crack distribution were examined.

2. Experimental procedure
Commercial SUS316 steel plates of 1.5 mm thick-
ness (Fe - 0.06 wt%C - 16.80 wt%Cr - 10.20 wt%Ni -
2.11 wt%Mo - 1.00 wt%Mn - 0.58 wt%Si - 0.027 wt%
P - 0.001 wt%S) were used for fatigue experiments in
this study. Rectangular specimens of 145 mm length,
10 mm width and 1.5 mm thickness were machined
from the steel plates. The specimens were then me-
chanically polished and finished using diamond paste
of 0.25 µm diameter. The average grain diameter of
the specimens was 13 µm. Fatigue experiments were
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Figure 1 Scaling exponent of crack size distribution, a (Nu: the number
of cracks of the size (x ′) equal to or larger than a given crack length,
X (x ′ � X )).

carried out using a bending fatigue equipment by re-
peatedly bending specimens to cause the maximum to-
tal strain range on the broadest specimen surface (the
surface area is 10 mm × 145 mm). Therefore, fatigue
cracks initiate on the broadest specimen surface and
grow in the through-thickness direction. The total strain
range has the maximum value at the broadest specimen
surface, and the maximum total strain range (�εt) was
0.00723, 0.0120 or 0.0169 in this study. The frequency
of the fatigue experiments was 0.7 Hz.

The specimens were fatigued to a given number of
fatigue cycles (N ), and optical micrographs were taken
on the surface cracks observed in a given area of 5 mm
(in width direction) × 1.6 mm (in length direction) at
the central part of the specimen at the magnification
of 100 times. The size distribution of fatigue cracks
was examined on these micrographs. Scaling exponent
of crack size distribution, a, is defined as shown in
Fig. 1. As reported in creep of the cobalt-base HS-21
alloy [3], the number of the cracks (Nu) of the size (x ′)
equal to or larger than a given crack length (X ) (the
cumulative number of the cracks) can be approximated
by the following power law with a scaling exponent, a,
at the larger crack sizes [6, 7]:

Nu(x ′ � X ) ∝ X−a (1)

The value of Nu is essentially the ranking of crack size,
and the value of X is considered to be the minimum
crack length in a given crack size distribution. The frac-
tal dimension of the spatial crack distribution (the frac-
tal dimension of crack pattern) was examined on five
micrographs of each specimen, in which crack size dis-
tribution was measured. The micrographs were taken
into a personal computer by an image scanner, and the
cracks in the original images were then manually traced
by red lines with one pixel width to obtain the processed
images for the fractal analysis [11]. Fig. 2 shows a
schematic illustration of the box-counting method used
for estimation of the fractal dimension of crack pattern
(D). The value of D can be obtained from the following
relationship between the number of boxes (n) contain-
ing cracks (shown in grey) and the size of boxes (r )
[12, 13]:

n = n0 • r−D (2)

where n0 is a constant. The fractal dimension (D) is the
averaged value over five images in this study.
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Figure 2 Schematic illustration of the box-counting method (D: the
fractal dimension of crack pattern, n: the number of boxes containing
cracks, r : the box size).

3. Results and discussion
3.1. Initiation and growth of fatigue cracks
Fig. 3 shows examples of surface cracks observed
in the fatigued specimens of the SUS316 steel
(�εt = 0.0120). The longitudinal direction of the spec-
imens is horizontal. The number of cracks and the crack
length increase with increasing the fatigue cycles. The
number of fatigue cracks was larger in the specimens
tested at the larger value of �εt. The large cracks are
almost straight and perpendicular to the longitudinal di-
rection (almost normal to the maximum tensile stress),
but the shape of the cracks is complex (for example,
Fig. 3c and d). Fig. 4 shows examples of fracture sur-
faces in the fatigued specimens of the SUS316 steel
(�εt = 0.0169). The macroscopic growth direction of
the fatigue crack is horizontal in the micrographs. Stage
I fatigue crack growth by slipping-off mechanism oc-
curs from the specimen surface to about 0.2 mm in depth
(Fig. 4a), and most of the fracture surface is formed by
stage II crack growth with striation patterns (Fig. 4b)
[14]. River-like patterns running from the specimen sur-
face, which are composed of many small steps and
ledges, are aligned in the macroscopic crack growth
direction (Fig. 4a). These patterns are formed by the
linkage of fatigue cracks growing on different planes
under the effect of mode III loading component. Table I
lists the results of fatigue experiments on the SUS316
steel. Fatigue cracks initiated in the early stage of fa-
tigue, and the number of cycles to crack initiation, Ni,
is less than 5% of the fatigue life, Nf [14]. The max-
imum plastic strain range, �εp, was calculated using
the fracture strain (εf) and the fatigue life (Nf) by the
following Manson-Coffin type equation [15]:

�εp • N 1/2
f = εf/2 (3)

where εf is assumed to be the elongation (0.53) of the
SUS316 steel in this study. The calculated value of �εp
is 0.00539 for �εt = 0.0169, 0.00339 for �εt = 0.0120
and 0.00132 for �εt = 0.00723.

TABLE I The results of fatigue experiments on the SUS316 steel

�εt Nf Ni �εp

0.0169 2420 110 0.00539
0.0120 6094 260 0.00339
0.00723 40344 1900 0.00132

�εt: the maximum total strain range, Nf: the fatigue life, Ni: the number
of cycles to crack initiation, �εp: the maximum plastic strain range
calculated by Equation 3.

3946



Figure 3 Fatigue cracks observed on the specimen surface of the SUS316 steel fatigued by bending (�εt = 0.0120). (a) 1712 cycles, (b) 3164 cycles,
(c) 4616 cycles and (d) 6094 cycles (fatigue life).

3.2. Size distribution of fatigue cracks
3.2.1. Scaling exponent of crack size

distribution
Fig. 5 shows the size distribution of surface cracks in
the fatigued specimens of the SUS316 steel (�εt =
0.0120). The size distribution of fatigue cracks can be
approximated by the logarithmic normal distribution,
irrespective of the number of fatigue cycles. This re-
sult is similar to that obtained on the size distribution
of creep cracks [4, 5]. The crack size distribution has
a long “tail” at the larger crack sizes. Similar results
were also obtained on the specimens tested under other
conditions. Fig. 6 shows the relationship between the
cumulative number of the surface cracks (Nu) (namely,
the ranking of crack size) and the crack length (X ) in
the fatigued specimens (�εt = 0.0120). As is known
from this figure, the total number of cracks increased
in the early stage of fatigue but levelled off in the later
stage. The total number of cracks was larger in the spec-
imen tested at the larger value of �εt. The value of
Nu seems to be well correlated to the value of X by a
power law at the crack sizes equal to or larger than about
2.0 × 10−5 m. This value corresponds to the length of
fatigue cracks that extended over about twice of the av-
erage grain diameter of the specimens (1.3 × 10−5 m).
The scaling exponent (a) of crack size distribution can
be estimated by fitting the values of Nu and X to
Equation 1.

3.2.2. Effects of experimental variables
on scaling exponent

The scaling exponent (a) may depend on the fatigue
variables or on the materials properties. The following

functional dependence of the scaling exponent (a) was
assumed in this study:

ln a = α + β ln y + γ ln z (4)

y = �εp/εr (4a)

z = (N − Ni)/(Nf − Ni) (4b)

where N is the number of fatigue cycles, and param-
eters α, β and γ are constant for a given value of the
minimum crack length (X ). The value of y is the nor-
malised plastic strain amplitude, and the value of z is
the normalised number of fatigue cycles. The values of
α, β and γ were estimated using experimental data by
the regression analysis for different values of X . It was
found that all the parameters, α, β and γ are negative in
the fatigued specimens of the SUS316 steel in this study.

Fig. 7 shows the relationship between the scaling ex-
ponent, a, and the normalised number of fatigue cycles,
z, in the fatigued specimens for X = 2.0 × 10−5 m. The
value of a is larger in the early stage of crack growth,
and decreases with increasing the value of z (with in-
creasing the fatigue cycles) because of the increase in
the size range of fatigue cracks. This may indicate that
the crack initiation as well as the growth and linkage
of cracks continues in the fatigue process up to final
fracture. The value of a is also larger in the specimens
with the same value of z tested at the smaller value of
�εt (or �εp), in which the number of cracks is smaller.
Three curves in the figure are the results of calcula-
tions by Equation 4. The values of parameters are exp
(α) = 0.303 (α = −1.19), β = −0.291 and γ = −0.727
for X = 2.0 × 10−5 m. Fig. 8 shows the relationship
between the scaling exponent (a) and the normalised
fatigue cycles (z) in the specimens of the 316 steel
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Figure 4 Examples of fracture surfaces in the fatigued specimens of the SUS316 steel (�εt = 0.0169). (a) (x � 0.2 mm and (b) x � 0.4 mm (x : the
distance from the specimen surface).

Figure 5 Size distribution of surface cracks in the fatigued specimens
of the SUS316 steel (�εt = 0.0120).

tested at �εt = 0.0169). The value of a increases with
increasing the value of z (or the fatigue cycles). The
scaling exponent (a) tends to increases with increasing
the minimum crack length (X ). This can be explained
in terms of the minimum crack length dependence of
the parameters of the scaling exponent. Fig. 9 shows the
relationship between the parameters of the scaling ex-

Figure 6 Relationship between the cumulative number of cracks (Nu)
and the crack length (X ) in the fatigued specimens of the SUS316 steel
(�εt = 0.0120).

ponent (α, β and γ ) and the minimum crack length (X )
in the fatigued specimens. All the values of the param-
eters were negative for the SUS316 steel in this study.
The value of exp (α) and that of |β| depend weakly
on the minimum crack size (X ) and both values re-
main almost constant (about 0.3) above the grain size
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Figure 7 Relationship between the scaling exponent, a, and the nor-
malised number of fatigue cycles, z(= (N − Ni)/(Nf − Ni)), in the fa-
tigued specimens of the SUS316 steel.

Figure 8 Relationship between the scaling exponent (a) and the nor-
malised number of fatigue cycles (z) in the specimens of the 316 steel
tested at �εt = 0.0169.

Figure 9 Relationship between the parameters of the scaling exponent
and the minimum crack length (X ) in the fatigued specimens of the
SUS316 steel.

(1.3 × 10−5 m). However, the value of |γ | increases
from about 0.5 to about 1.0 with increasing the value
of X . The increase of the scaling exponent (a) with the
minimum crack length (X ) is principally attributed to
the minimum crack length dependence of the value of
γ . Thus, the scaling exponent of crack size distribution
(a) depends more strongly on the fatigue cycles (N or z)

than on the maximum plastic strain range (�εp) in the
SUS316 steel.

The scaling exponent (a) may also depend on ma-
terials properties that affect the initiation, growth and
linkage of fatigue cracks. The dependence of the value
of a on the experimental variables may differ in mate-
rials with different materials properties. Further study
is required to reveal the relationship between the crack
size distribution, the experimental variables and the ma-
terials properties.

3.3. Spatial distribution and size
distribution of fatigue cracks

3.3.1. Fractal nature of spatial crack
distribution

Fig. 10 shows examples of the fractal dimension of
crack pattern estimated by the box-counting method in
the fatigued specimens. The fractal dimension of crack
pattern (D) was estimated by fitting the datum points
to Equation 2. The value of D increases from about
0.9 to about 1.2 with increasing the number of fatigue
cycles. Similar results were obtained in the specimens
fatigued under other conditions. Fig. 11 shows the re-
lationship between the fractal dimension of crack pat-
tern, D, and the normalised number of fatigue cycles,
z(= (N − Ni)/(Nf − Ni)), in the fatigued specimens.
The value of D increases with increasing the value of
z, and is larger in the specimens tested at the larger

Figure 10 Examples of the fractal dimension of crack pattern estimated
by the box-counting method in the fatigued specimens of the SUS316
steel.

Figure 11 Relationship between the fractal dimension of crack pattern,
D, and the normalised number of fatigue cycles, z, in the fatigued
specimens of the SUS316 steel.
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value of �εt. The smallest value of D (about 0.93) lies
between the fractal dimension of Cantor dust (about
0.63) and the Euclid dimension of a straight line (D = 1)
[16]. The largest value of D (about 1.23) is similar to
the fractal dimension of Koch curve (about 1.26) [16],
although there is no geometrical similarity between the
crack pattern and Koch curve.

3.3.2. Relations between size distribution
of cracks and crack pattern

Fig. 12 shows the relationship between the fractal di-
mension of crack pattern (D) and the scaling expo-

Figure 12 Relationship between the fractal dimension of crack
pattern, D, and the scaling exponent of crack size distribution, a,
(X = 2.0 × 10−5 m) in the fatigued specimens of the SUS316 steel.

Figure 13 Examples of crack patterns in the specimens fatigue-fractured at different maximum total strain ranges (�εt).

nent of crack size distribution (a) (the minimum crack
length, X = 2.0 × 10−5 m) in the fatigued specimens.
The value of D decreases with increasing the value of
a, but three sets of the datum points at different val-
ues of �εt are fitted to three separate curves. A unique
relationship was not obtained between the fractal di-
mension (D) and the scaling exponent (a) estimated
for all the values of X . The fractal dimension is larger
in the specimens tested at the larger value of �εt, since
the number of surface cracks is larger at the larger
value of �εt. The value of D may depend not only on
the fatigue conditions but also on the materials prop-
erties. Fig. 13 shows examples of crack patterns in the
specimens fatigue-fractured at different maximum total
strain ranges (�εt). The scaling exponent of crack size
distribution (a) for X = 2.0 × 10−5 m and the fractal
dimension of crack pattern (D) are shown in the figure.
Two specimens have almost the same values of a but
different values of D. As shown in the schematic illus-
tration in the figure, the values of a in two specimens
can be almost the same, even if both the number of
fatigue cracks (Nu1, Nu2) and the length of the largest
crack (X1, X2) are different.

It is known that the fractal dimension of dimple pat-
tern (D) is about 1.5 and is correlated with the scaling
exponent (a) of dimple size distribution (about 1.5) in
the fractured specimens of steels [8] or in the creep-
ruptured specimens of the pure Zn polycrystals [9]. The
dimple pattern on the ductile fracture surface forms
a kind of network that is composed of dimple walls
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[8, 9, 17]. Extensive plastic or creep deformation gen-
erally occurs during the growth and linkage of voids,
which leads to the formation of dimple pattern on the
fracture surface. The formation of dimples is associ-
ated with microstructural features such as grain size or
population of inclusion [9]. On the other hand, there
is a negative correlation between the fractal dimension
of crack pattern (D) and the scaling exponent of crack
size distribution (a) in the fatigued specimens of the
SUS316 steel in this study. There is no unique relation-
ship between the fractal dimension and the scaling ex-
ponent about fatigue cracks in the fatigued specimens.
Fatigue cracks are discretely spaced on the specimen
surface. The larger fatigue cracks grow in the direction
almost normal to the maximum tensile stress (the lon-
gitudinal direction of a specimen), but the shape of the
surface cracks is complex. A large amount of plastic
deformation is localised in the near crack-tip region in
fatigue, as shown by striations on the fatigue fracture
surface (Fig. 4b) [14, 18]. River-like patterns composed
of small steps and ledges, which are formed as a result of
crack linkage under the effect of mode III loading com-
ponent, initiated from the specimen surface (Fig. 4a)
[14]. These imply that the complex shape of the sur-
face cracks is related to the underlying microstructure
in the specimens of the SUS316 steel fatigued by cyclic
bending. Thus, differences in the fracture mechanism
and the pattern formation may lead to a difference in the
fractal nature between the crack pattern and the dimple
pattern.

4. Conclusions
The size distribution of surface cracks and the crack pat-
terns were examined on the specimens of the SUS316
plates fatigued by cyclic bending. The results obtained
were summarised as follows.

1. The size distribution of the fatigue cracks could
be approximated to a logarithmic normal distribution,
irrespective of the maximum total strain range (�εt) or
the number of fatigue cycles (N ). The number of the
cracks (Nu) of the length (x ′) equal to or larger than
a given size (X ) (namely, the ranking of crack size)
could be approximated to a power law, Nu ∝ X−a , with
a scaling exponent a at the larger crack sizes.

2. The value of a decreased with increasing the num-
ber of fatigue cycles (N ) because of the increase in the
size range of fatigue cracks. The value of a was larger
in the specimens tested at the smaller total strain range
(�εt). The dependence of the value of a on the experi-
mental variables were also shown in this study.

3. The fractal dimension of crack pattern (the fractal
dimension of spatial crack distribution), D, increased
in the range from about 0.9 to about 1.2 with increasing
the number of fatigue cycles (N ). The value of D was
larger in the specimens fatigued at the larger total strain
range (�εt).

4. There is a negative correlation between the fractal
dimension of crack pattern (D) and the scaling exponent
of crack size distribution (a) in the fatigued specimens
of the SUS316 steel. However, there was no unique rela-
tionship between the fractal dimension and the scaling
exponent.
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